

## **COUPLING LAND-USE MODELS AND NETWORK-FLOW MODELS**

Paul Waddell, University of California, Berkeley

Energy Efficient Mobility Systems (EEMS) Vehicle Technologies Office U.S. Department of Energy

Project ID#: eems035 Pillar(s): Urban Science















#### **OVERVIEW**

#### **Timeline**

Start date: 10/2017

End date: 09/2019

■ Percent complete: 100%

#### **Budget**

■ Total funding: \$0.69M

DOE share: 100%

FY 2018: \$0.26M

• FY 2019: \$0.43M

#### **Barriers**

- Transportation planning overlooks long-term impacts on urban development, induced travel demand
- Computationally expensive transport models undermine long-term analysis
- Impact of new mobility technologies on long term household choices uncertain

#### **Partners**

- Project Lead: LBNL
- Partners: LBNL, NREL, ORNL, INL, ANL
- Collaborators: Google, Purdue, MTC



#### RELEVANCE AND OBJECTIVES

- Need to quantify the impact of urban development on mobility patterns and energy use
- Need to quantify the impacts of SMART technologies on long-term urban development
- Need to evaluate combined policy impacts of land use and transportation to avoid endogeneity bias
- Supports EEMs/VTO Goal: Linking long-term modality styles with short/medium term mode choice in a multimodal transportation system, with the ability to simulate emerging mobility services.

- Develop an integrated modeling pipeline that encompasses land use, travel demand, traffic assignment, and energy consumption
- Model combined and cumulative impacts of transportation infrastructure and land use
- Improve computational performance to simulate regions over 30 years for scenario analysis



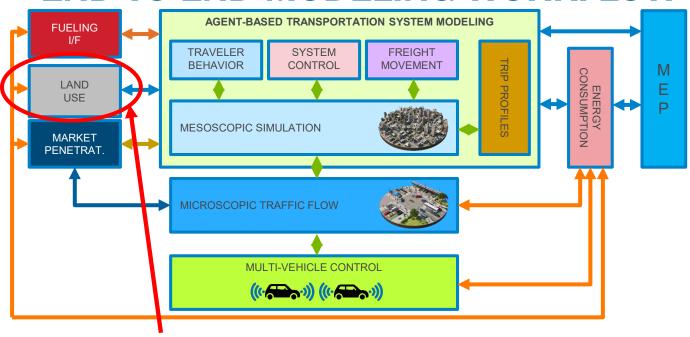
## **MILESTONES**

| Date             | Milestone                                                                                                                                        | Status   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| September 2018   | Initial implementation of ActivitySynth (daily activity demand generation for mandatory trips)                                                   | Complete |
| March 2019       | Performance evaluation of integrated modeling platform, identify opportunities for improvement of computational efficiency and predictive power. | Complete |
| June 2019        | Progress measure: Run UrbanSim and BEAM end-to-<br>end on 2+ scenarios in Bay Area and produce a<br>portfolio of MEP metrics                     | Complete |
| September 2019   | Evaluate implementation of the platform for potential application to additional metro areas (e.g. Austin, Detroit).                              | Complete |
| December<br>2019 | Replaced ActivitySynth with a complete Activity Based Model ActivitySim, developed in collaboration with MPOs                                    | Complete |
| March 2020       | Benchmarked and Validated ActivitySim and MicroSim                                                                                               | Complete |

#### **APPROACH**



### **END-TO-END MODELING WORKFLOW**



UrbanSim is the *only* land use model in the SMART Mobility workflow and is thus path-critical for most core models

## **APPROACH**





**New Forms of Mobility** 

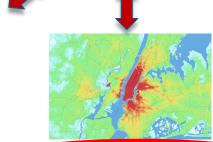


**Enhanced Traffic Flow** 

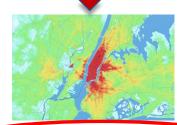


Vehicle Ownership Vehicle Energy Performance





**Traveler Behavior** 



Advanced Accessibility Analysis



Land Use Change



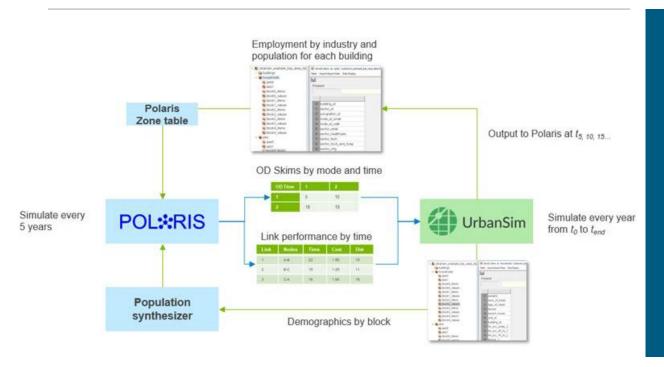
**Charging Siting & Operations** 





#### TECHNICAL ACCOMPLISHMENTS

#### **UrbanSim + POLARIS Workflow**



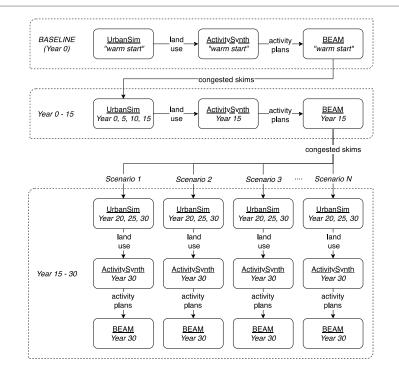
 Workplace location choices, activity demand generation handled by travel model (POLARIS)



#### TECHNICAL ACCOMPLISHMENTS

#### **UrbanSim + BEAM Workflow**

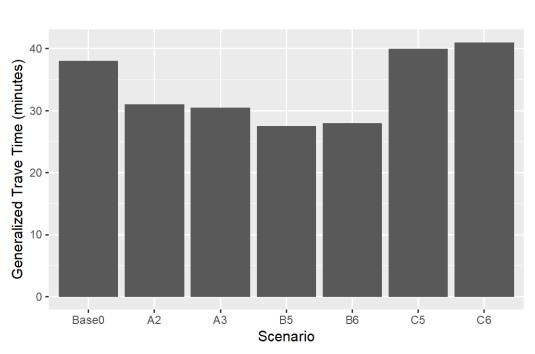
 Workplace location choices, activity demand generation handled by land use models (UrbanSim + ActivitySynth)





#### **URBANSIM + BEAM RESULTS**

#### Average (generalized) commute times by scenario

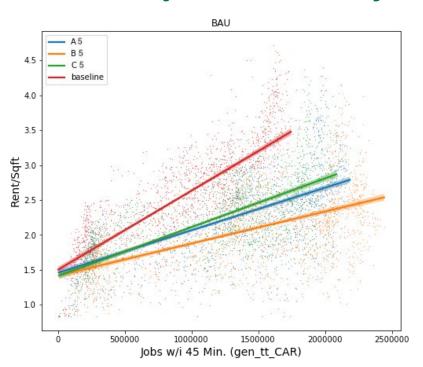


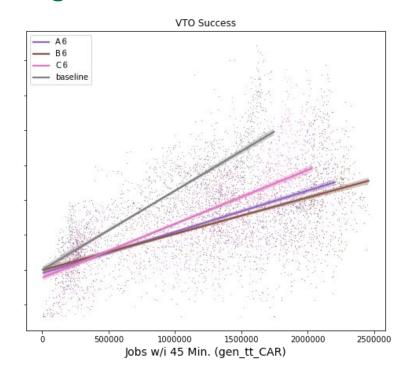
- Reliance on high-cost modes in Scenario B, such as transit and ride-hailing, lead to a downward pressure on commute times
- Accessibility gradients show how this trend translates into changes in built environment



#### **URBANSIM + BEAM RESULTS**

#### Decentralized jobs-accessibility vs. rent gradients

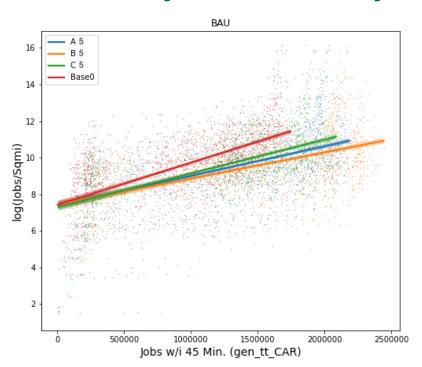


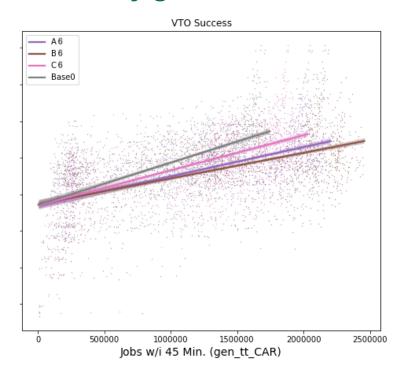




#### **URBANSIM + BEAM RESULTS**

#### Decentralized jobs-accessibility vs. jobs density gradients







#### TECHNICAL ACCOMPLISHMENTS

#### **UrbanSim + ActivitySim Workflow**

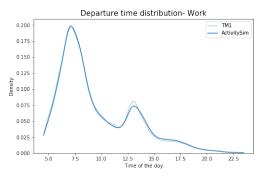
- BEAM requires person-level activity plans as an input
- UrbanSim does not currently produce these
- ActivitySim is a set of 27 models
  - Work/School location
  - Coordinated daily activity Pattern
  - Mandatory, Non-mandatory and joint tours and trips
  - Frequency, destination, schedule and mode choice

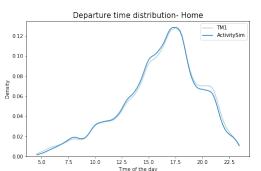
~25 million trips
Initial validation completed
Run time is approximately 1 hour (24 cores machine) with 100%
of population and no sampling

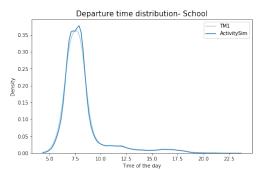


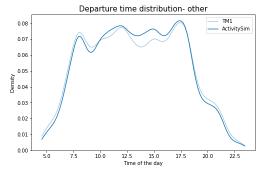
#### **Validation – Departure Time**

 Departure time distribution from ActivitySim closely matches Metropolitan Transportation Commission (MTC) travel model results for work and school trips





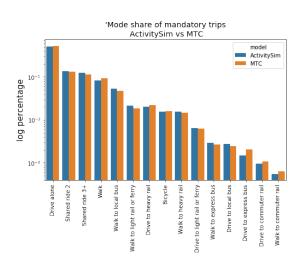


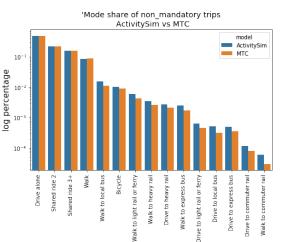






#### Validation – Mode share



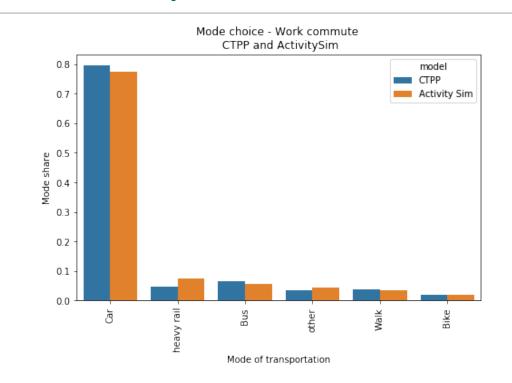


• Mode shares from ActivitySim closely match MTC travel model mode shares for mandatory and non mandatory trips.



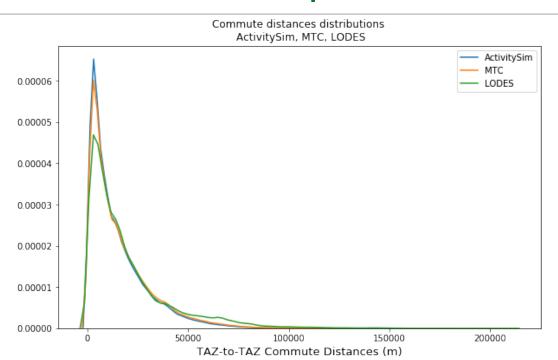
#### Validation – Mode share of commute trips

Mode shares
 reasonable closr to
 Census
 Transportation
 Planning Package
 (CTPP) mode
 shares





#### **Validation – Commute trips distance**

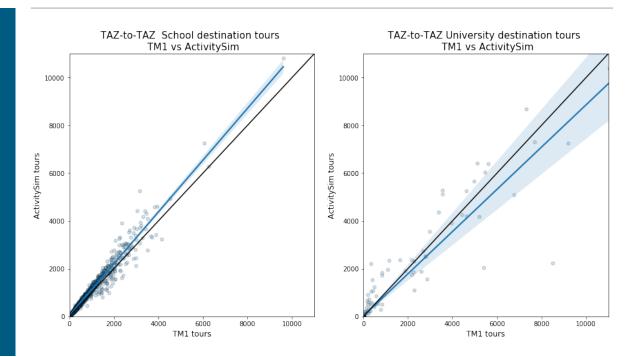


 Commute distance distribution closely match MTC and the Longitudinal Employer-Household Dynamics (LEHD) database, Origin-DestinationEmploy ment Statistics.



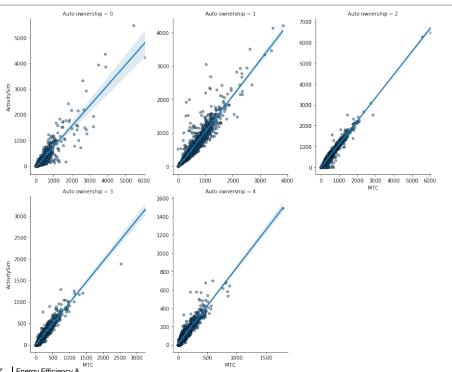
#### **Validation – School Choice**

 Zone to zone distributions for school destination choice models closely match MTC model results.





#### **Validation – Auto-ownership model**



 ActivitySim auto ownership model results closely match MTC model results



#### TECHNICAL ACCOMPLISHMENTS

#### Traffic Microsimulation on a GPU to massively scale performance

- Bay Area network (derived from OSM/OSMnx)
- 223K nodes
- 560K edges

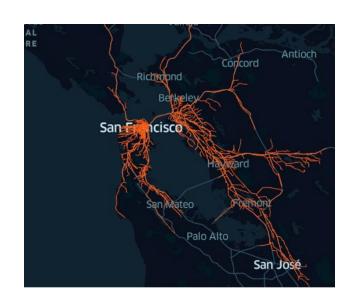




#### O/D GENERATION

#### Static demand (now using activity-based demand from ActivitySim)

- Bay Area MTC data (2017)
- Pared down to morning travel, containing highest # of commuters
- TAZ <-> TAZ origin/destination data
  - Randomly assign nodes as O and D within the TAZs
- 3.1M total OD pairs between 5am-12pm



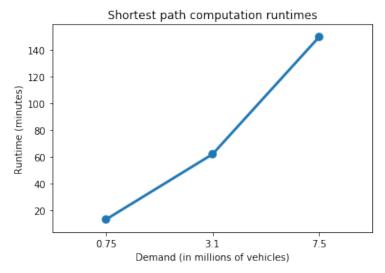


#### SHORTEST PATH

#### Parallelized priority queue





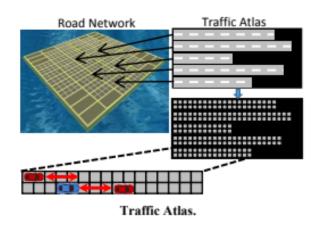


- Single source shortest path (SSSP)
   Dijkstra priority queue greedily selects closest vertex that has not yet been processed
- Parallelized using OpenMP framework of message passing and shared memory usage



#### **MICROSIMULATION**

#### **Governing dynamics**



$$\dot{v} = a \left[ 1 - \left( \frac{v}{v_o} \right)^{\delta} - \left( \frac{s^*(v, \Delta v)}{s} \right)^2 \right]$$

$$m_i = \begin{cases} \exp(-(x_i - x_0)^2) & x_i > x_0 \\ 1 & x_i \le x_0 \end{cases}$$

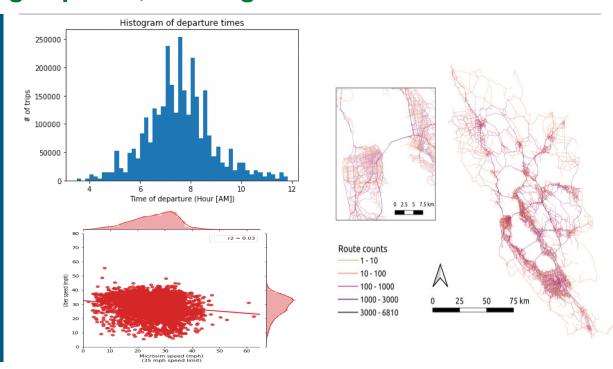
- 7 hours of simulation with .5 second timesteps
- Car-following, lane changing, and gap acceptance
- Parallelized, GPU-based using CUDA
- Vehicle checks the traffic atlas to find the position and speed of surrounding cars
- ~6.5 minute runtime (massive speedup enabling metro scale microsimulation)



#### SIMULATION STATISTICS

#### Departure times, average speeds, and edge volumes

- Departure times currently based on Gaussian distribution
- Speeds follow normal and lognormal distributions, depending on edge speed limit
- Edge volumes reflect congestion on Bay Bridge, large corridors

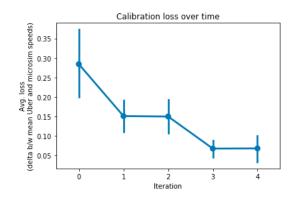




#### **CALIBRATION**

#### Minibatch gradient descent on four parameters

$$\min_{a,b,T,s_0} \sum_{n=1}^{N} \frac{\sum_{k=1}^{K} \left[ a(1 - (\frac{v_k}{v_{0,n}})^{\delta} - (\frac{s_o + Tv + \frac{v}{2\sqrt{ab}}}{s})^2 \right] t}{K} - \overline{v}_{uber} |$$



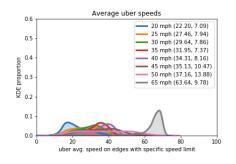
- Minibatch gradient descent within reasonable ranges of a, b, T, & s<sub>0</sub>
- Batches of 5 random sets per iteration
- Threshold of .05 mph error for convergence
- Converges in 5 iterations

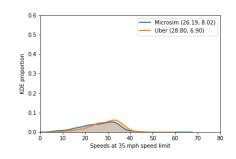


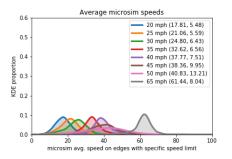
#### **VALIDATION**

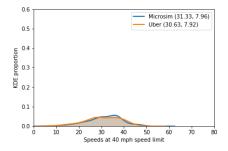
#### Comparison to Uber Movement edge data per hour

- Closely match Uber movement speed data per edge, even with oversimplified intersection traffic controls
- Edge speed limit and Uber standard deviations (2x) used to model Uber distributions more closely













#### ONGOING ENHANCEMENTS

#### Real activity demand and dynamic shortest path

- Use real activity demand generated from ActivitySim models rather than synthetic MTC data with random departure times
- Update average edge speeds and probabilistically choose different paths
- Leverage subgraph characteristics to improve runtime
- Every subgraph OD has multiple trips between them and each trip chooses 1 out of 3 possible routes

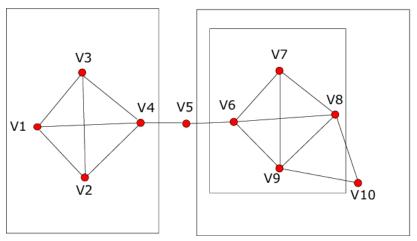


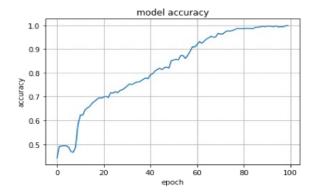
Image source: Top-k Overlapping Densest Subgraphs: Approximation and Complexity

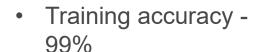


## **ONGOING ENHANCEMENTS (CONT'D)**

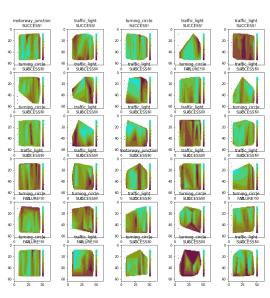
#### Intersection modeling and control inference

- Compiled HERE trajectory data that contain speeds, timestamps, and locations every minute
- Gathered labels (though sparse) of certain intersections' traffic control from OSM
- Use labeled training data in supervised learning algorithm using CNN
- Apply trained neural network model to test data (whose labels exist) and determine accuracy





Test accuracy - 72%





# MOBILITY FOR OPPORTUNITY

FOR MORE INFORMATION

Paul Waddell, University of California Berkeley

Energy Efficient Mobility Systems (EEMS)
Vehicle Technologies Office
U.S. Department of Energy
eeems@ee.doe.gov







U.S. DEPARTMENT OF ENERGY

## **SMART**MOBILITY

Systems and Modeling for Accelerated Research in Transportation









